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Abstract Today, jet fuel costs are a growing part in airlines’ expenditures and

have high fluctuations. Therefore, airlines think about minimizing jet fuel costs and

counteracting fuel price uncertainty. The strategic flight planning highly determines

the jet fuel consumption of an airline. In this paper, we present a study of the

impacts of fuel price uncertainty on strategic flight planning. The study is performed

with a new developed stochastic optimization model for strategic flight frequency

planning under jet fuel price uncertainty. As airline seats are a perishable service,

we also consider uncertain demands. We present a two-stage stochastic program that

determines the optimal offered flights with their frequency, and uses the passenger

routes for evaluation. As innovation, this study integrates financial hedging and

operational risk management simultaneously to decrease the solutions’ risk. We

show that the optimal offered flights depend on the jet fuel price development.

Finally, the integration of financial planning into the operational model improves

profit at given risk levels of the airline and dominates non-integrated planning.

Keywords Schedule design � Strategic airline planning � Stochastic programming �
Jet fuel price uncertainty � Financial hedging

1 Introduction

Today, the two largest parts of the expenditures of airlines are the costs for labor and

fuel (Air Transportation Association—Office of Economics 2009). The percentage

for jet fuel expenditures has increased in the last years. They have grown from
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approx. one-tenth to one-third in only 10 years (Deutsche Bank Research 2008). As

jet fuel price fluctuations are also high (see Fig. 2), airlines face a growing

uncertainty for their costs. It therefore becomes more important for airlines to think

about minimizing fuel costs and counteracting fuel price uncertainty.

As the schedule design significantly determines the fuel consumption of an

airline, we aimed to develop a model that supports strategic decisions about this

planning phase under fuel price uncertainty. We determine the optimal offered

flights between a given set of airports with their frequency. To counteract jet fuel

price uncertainty, we consider financial hedging instruments. As demand is highly

uncertain at the time when the schedule is planned and aircraft seats are one of the

most perishable services, we also introduce stochastic demands.

This paper is organized as follows: Sect. 2 introduces schedule planning, presents

the cost structure in the airline industry and discusses methods to counteract fuel

price uncertainty. It also discusses risk management, briefly introduces demand

uncertainty and ends with a literature survey. Section 3 deals with the proposed

model: It presents a model description and the mathematical model before it shows

the data used for the case study. Section 4 displays the results for model variations

with and without jet fuel price uncertainty and finally, a conclusion is drawn in

Sect. 5.

2 Problem description

2.1 Schedule planning in the airline industry

An airline schedule is usually planned several months in advance in several separate

steps. Figure 1 gives an overview over these steps:

Schedule Design

Fleet Assignment

Aircraft Routing

Crew Scheduling

Fig. 1 Planning stages
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The first step is to decide which flights are offered to the customers. For example

a number of three flights from Frankfurt to London every day in the morning could

be offered. This step is called schedule design and is usually done manually. The

traffic forecast, seasonal demand as well as strategic and tactical initiatives are

important for this first step. After the schedule design, the fleet assignment takes

place. This step assigns aircraft types to the flights to match the demand. The next

planning step is the aircraft routing. This step assigns the particular airplanes of an

airline to the flights, so that every flight is covered and adequate opportunities and

time for maintenance is reserved. Finally, crews are assigned to the flights in the

crew scheduling. After these planning steps, operating departments take care of

conforming the schedule and restoring it in case of deviations, e.g. due to bad

weather (see Gopalan and Talluri 1998; Barnhart and Cohn 2004).

In this paper, we focus on the schedule design phase and develop a strategic

planning model for the airline industry under jet fuel price and demand uncertainty.

Similarly to Lederer and Nambimadom (1998) we mean by schedule the frequency

of service between two airports. We therefore determine if and how often a flight

between two airports should be flown with a certain aircraft type and how much fuel

should be hedged as a decision under uncertainty. The optimal passenger flow in

each scenario enables the evaluation. The flight times are not determined as this

model aims to support decisions on a strategic level and focuses on uncertainty. To

measure the robustness of the solutions, we integrate and restrict the Conditional

Value at Risk (CVaR) as risk measure.

Although the flight schedule of an airline depends on other factors as well, the

study will give some insight into the impacts of fuel price uncertainty on strategic

airline schedule planning. We only consider the most important aspects of schedule

design, because we aim to focus on uncertainties. Thereby we can integrate fuel

price and demand scenarios and keep the model smaller and solvable.

2.2 Cost structure in the airline industry

The Air Transportation Association—Office of Economics (2009) analyzes the

current cost structure of North American airlines. The two largest parts of the

expenditures of airlines are the costs for labor and for fuel. The Deutsche Bank

Research (2008) underlines that the percentage of expenditures for jet fuel prices

has become an increasing part of the total expenditures: They grew from approx.

10 % in 1998 to approx. 33 % in 2008. For some low-cost carriers the jet fuel

expenditures are even about 50 % of their total expenditures.

2.3 Jet fuel price uncertainty

The Energy Information Administration (2009) provides data for oil and fuel prices

(see Fig. 2). The data shows that the price for jet fuel has high fluctuations and

increases.

Airlines thus have to face a high uncertainty for a growing part of their

expenditures.
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2.4 Counteracting higher jet fuel prices and fluctuation

Larger aircraft usually have less jet fuel consumption per passenger (see Air France

Press Office 2008). The airbus A380 is the first long-haul aircraft that consumes

\3 l per passenger over 100 km. But using larger aircraft is only beneficial when

there are enough passengers. Therefore, it might be necessary to route passengers

through hubs and to merge flights. For example if there are several flights from

Europe to North America, the passengers from all the European locations could first

be flown to London, and one flight with a larger aircraft from London to North

America could save jet fuel. On the other hand, this means less comfort for the

European passengers who do not start in London, because they have to change the

plane. Some possible passengers might then choose another airline that offers a non-

stop-flight from their hometown. The airline could also offer a discount as

compensation for the discomfort. This tradeoff between reducing passenger

comfort, which might decrease revenues, and reducing jet fuel consumption is

considered in this paper.

It is also possible to pass the higher jet fuel costs to the passengers via fuel

surcharges. To consider that, the model could be solved with other demand and

price data that could be calculated from a revenue management framework.

To counteract high jet fuel price fluctuations financial hedging instruments can be

used. With financial hedging the price for future purchases can be fixed. If an airline

wants to hedge against higher jet fuel prices, it can sign a contract that fixes the

price for jet fuel for a certain amount for a certain time. Then higher fuel prices do

not have negative effects on the airline, but the airline is also not able to benefit

from lower jet fuel prices anymore. Financial hedging instruments can be used to

minimize fluctuations and are therefore an effective method for risk management.

2.5 Derivatives and hedging of jet fuel prices

Derivatives, as Hull (2003) argues, have become increasingly important in the last

years. Today, futures, forward-contracts, options and swaps are regularly traded.

Fig. 2 Jet fuel price development 1986–2009. Gulf Coast Kerosene-Type Jet Fuel Spot Price FOB
(Dollars per Gallon) [Data: Energy Information Administration (2009)]
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Their value depends on other underlying variables, for example traded assets or

currencies.

The easiest hedging instruments are forward-contracts and futures. Those are

contracts to buy or sell a certain asset to a certain price at a certain time. Forward-

contracts are usually traded in the over-the-counter market whereas futures are

standardized and usually traded on an exchange. For example the future price of gold

in September for December could be quoted as $300. This is the price for which

traders could buy or sell gold for delivery in December. The contract specifies the

amount, the price and, in case of a commodity, also the product quality and delivery

location. Contracts are usually available for several delivery periods in the future.

Options are a different type of derivatives. They give the owner the right to do

something but, in contrast to forward-contracts and futures, they need not to be

exercised. They also have a price, whereas it costs nothing to enter into a forward or

future contract.

Cobbs and Wolf (2004) argue that futures or forward-contracts for jet fuel are

often not available, but show dynamic hedging strategies to hedge the jet fuel price

using derivatives with other underlying assets like crude or heating oil, whose prices

highly correlate with the jet fuel price.

With an industry survey Cobbs and Wolf (2004) show that hedging was at the

end of 2003 not very common at the majority of airlines. Their research results

indicate that hedging creates market value and that the consideration of financial

hedging instruments therefore could create a competitive advantage for an airline.

In general, a good risk management strategy can be beneficial for companies.

Triantis (2005) lists several reasons.

2.6 Demand uncertainty

Airlines do not only face uncertainty for their costs: The demands and therefore the

revenues are also uncertain. Figure 3 shows the yearly growth of global passenger

traffic from 1951 to 2007 [Data see Air Transportation Association (2010)]. Cento

(2009) argues that because the product of airlines is one of the most perishable, they

have implemented techniques to counteract demand uncertainty: For short-term

demand fluctuations the yield management is an efficient method, but to counteract

long-term demand shifts the strategic network planning has to be adjusted.

The variations in the particular regions are even higher: The International Air

Transport Association reports that the growth in passenger demand in March 2009

varies between 4.7 % for the Middle Eastern carriers and -15.6 % for the African

carriers. Furthermore, the average load factor decreased because capacity was not

adjusted as much as demand fell [Data see International Air Transport Association

(2009b)]. As this paper intends to focus on strategic planning, the demand

uncertainty also has to be considered.

2.7 Underlying literature

The airline industry is a sector where operations research is widely used. In this

section, we give a short overview about the literature that is related to this paper. Yu
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(1998) presents a wide variety of operations research applications in the airline

industry.

Gopalan and Talluri (1998) give an overview over problems and mathematical

models in airline schedule planning. Furthermore Etschmeier and Mathaisel (1985)

present an overview of early literature dealing with schedule construction and

schedule evaluation. Lederer and Nambimadom (1998) show that different network

configurations such as hub or direct networks can be optimal in different situations.

In Sect. 2 of their paper, Wen and Hsu (2006) review the literature on airline

flight frequency programming models. These models can also include several fleet

types. Like in the developed model in this paper, the main decision variables are the

flight frequencies on routes with different aircraft types.

Sherali, Bish and Zhu (2006) present a survey of models, concepts and

algorithms for the fleet assignment problem. They consider various types of pure

fleet assignment models as well as integrated fleet assignment models with other

planning phases. An integrated model for fleet assignment and schedule design that

considers flight leg selection is presented by Lohatepanont and Barnhart (2004).

They also give a short overview over integrated models for schedule design and fleet

assignment. Soumis, Ferland and Rousseau (1980) present an integrated model that

considers passenger satisfaction and the interaction between passenger and aircraft

routing.

Cobbs and Wolf (2004) describe hedging strategies for airlines and perform an

industry survey. They find out that the airline industry is not very much hedged at

the time of their survey, although this would give a competitive advantage. Also

Carter, Rogers and Simkins (2006) find out that hedging is positively related to the

firm value of airlines. Triantis (2005) presents general reasons for an integrated risk

management strategy. Financial hedging instruments are described by Hull (2003).

Demand uncertainty has also been considered in strategic airline planning. For

example Barla and Constantatos (1999) present reasons why hub-and-spoke

networks provide more flexibility to counteract uncertain demand. Barla (1999)

examines with a duopoly game the effects of strategic interactions on an airline

network under demand uncertainty.

Fig. 3 Growth of global passenger traffic
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Hsu and Wen (2000) apply Gray Theory to the airline network design problem

and consider demand uncertainty. The same authors (Hsu and Wen 2002) evaluate

the airline network design in response to demand fluctuations. Thereby they also

review the literature that considers demand uncertainty. Yan, Tang and Fu (2008)

present an airline scheduling model that considers stochastic demands, while

Sherali and Zhu (2008) provide a stochastic model for fleet assignment

considering stochastic demands. List et al. (2003) present a stochastic model for

fleet planning under uncertainty and consider partial moments as a measure for

robustness. Fábián (2008) shows how the CVaR can be integrated into linear

optimization models.

For the used optimization techniques and their terms we refer to detailed

introductions in literature: Kall and Wallace (1994) and Birge and Louveaux (1997)

provide detailed introductions in stochastic programming.

To the knowledge of the authors, a strategic planning model for airline schedule

design that considers risk measures and financial hedging under jet fuel price and

demand uncertainty has not been developed yet.

3 Model

3.1 Model description

This section presents the developed mathematical optimization model that

determines the optimal flights offered with their frequency and the optimal

passenger flows for a given network of airports. The passengers can be directly

transported to their destination on a non-stop flight or they can be indirectly

transported via one or two airports, where they change the aircraft. When passengers

do not fly non-stop, a discount on the price of the flight is given to compensate the

discomfort. For a two-stop flight the discount is given two times. Passenger spill and

recapture is not considered. Furthermore different aircraft types with their capacities

and their fuel consumption are assigned to the flights.

As jet fuel costs become the major part of an airline’s expenses and jet fuel

prices have high fluctuations, this model explicitly considers the uncertainty of jet

fuel prices with a scenarioset for each jet fuel price. The demand scenarios are

also considered in a scenarioset and every demand scenario is combined with

every fuel price scenario. The model is a two-stage stochastic program with

no: of fuel scenariosj j � no: of demand scenariosj j scenarios.

To counteract jet fuel price uncertainty, this model considers financial hedging

instruments. With forward-contracts/futures the purchases of jet fuel can be hedged.

This model assumes that there are futures for jet fuel, which may not exist, but as

Cobbs and Wolf (2004) argue, airlines can use futures on commodities whose prices

highly correlate with jet fuel prices. The hedging can include a margin to model a

risk premium or transaction costs and the amount of the jet fuel bought that can be

hedged is arbitrary from 0 to 100 %. Reverse hedging or hedging more than 100 %

is not allowed.
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The jet fuel price scenarios and the prices for the financial instruments are

adjusted to each other, so that there is no riskless arbitrage strategy.

As risk measure we use the CVaR. The value of the CVaR denotes the average

value of a certain percentage of the worst scenarios. Usual percentages are 1, 5 or

10 %, for example. We use 10 % in the case study. Because it is a downside

measure, it is a better risk measure than the often used variance that also increases

with upside variations and should therefore only be used as risk measure in

symmetric distributions. Compared to the Value at Risk, which denotes the

threshold value between the x % worst scenarios and the other scenarios, the CVaR

also considers the values of the x % worst scenarios and therefore fits very well to

the perception of risk. It can be formulated as LP with the dual formulation of

Fábián (2008). This formulation has been slightly adjusted and integrated.

Compared to literature, this is the first model that considers risk measures,

financial hedging and jet fuel price uncertainty in one optimization model. Fuel

price uncertainty and financial hedging have not been considered in one

optimization model, yet. The model focuses on the demand und fuel price

uncertainties, other uncertainties are not considered.

Altogether this model is a strategic optimization model for strategic airline

planning under fuel price and demand uncertainty which considers risk/robustness

measurement and financial instruments as countermeasures to uncertainty. Figure 4

shows the decisions and the corresponding data (in the blue boxes) of the

optimization model.

3.2 The stochastic optimization model

Sets:

A Set of airports

T Set of aircraft types

FS Scenarioset for jet fuel prices

DS Scenarioset for demands

Parameters:

disti,j Distance from airport i to airport j in km

pi,j Sell-price for a flight from i to j

di,j,ds Flight demand from airport i to airport j (stochastic parameter)

pd Price discount given for every aircraft change

xmin Percentage of expected demand for every possible flight connection that

has to be satisfied. Can ensure a certain service level

mt Passenger capacity of aircraft type t

const Jet fuel consumption of aircraft type t in liters per km

cpmt Operational cost per km of aircraft type t (without jet fuel costs)

rmaxt Maximum range of aircraft type t

rmint Minimum range of aircraft type t

ubt Maximum number of flightkilometers with aircraft type t

f_pr Forwarded jet fuel price

350 M. Naumann, L. Suhl
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f_margin Margin for forwards in percent

prfs Jet fuel price per liter in fuel-scenario fs (stochastic parameter)

probfs,ds Probability of demand scenario ds in jet fuel scenario fs

a Probability value for the CVaR

Stage-1-variables (fixed under uncertainty):

yi;j;t;8i;j2A:i\j Number of flights per day from i to j and j to i with aircraft type t

(non-negative integer variable)

buy_stoch Bought amount of fuel in liters to the stochastic price (nonnegative

continuous variable)

buy_hedge Bought amount of fuel in liters to the hedged price (nonnegative

continuous variable)

Stage-2-variables (independent for each scenario)

x0i,j,dsi=j Passenger flow—directly transported from i to j in demand-

scenario ds (nonnegative continuous variable)

x1i,k,j,dsi=j=k Passenger flow—transported passengers from i to j over k with

aircraft change on airport k in demand-scenario ds (nonnegative

continuous variable)

Fig. 4 Decisions and data in the optimization model
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x2i,k,l,j,dsi=j=k=l Passenger flow—transported passengers from i to j over k and l

with aircraft change on airport k and airport l in demand-scenario

ds (nonnegative continuous variable)

Accounting-variables:

revenueds Revenue in demand scenario ds

consumption Jet fuel consumption

fuel_costsfs Jet fuel costs in fuel-price-scenario fs

operationcosts Sum of operational costs (without jet fuel costs)

profitfs,ds Profit in demand scenario ds in jet fuel scenario fs

cvar Conditional Value at Risk

cvar_y0 Auxiliary variable for the dual CVaR-formulation

cvar_yfs,ds Nonnegative auxiliary variables for the dual CVaR-formulation

Objective Function:

max
X

fs2FS;ds2DS

probfs;ds � profitfs;ds

Constraints:

x0i;j;ds þ
X

k2A:i 6¼j6¼k

x1i;k;j;ds þ
X

k;l2A:i6¼j 6¼k 6¼l

x2i;k;l;j;ds� di;j;ds 8i; j 2 A : i 6¼ j; ds 2 DS

ð1Þ

xmin �
X

ds2DS

X

fs2FS

probfs;ds � di;j;ds

�
X

ds2DS

X

fs2FS

probfs;ds � x0i;j;ds þ
X

k2A:i6¼j 6¼k

x1i;k;j;ds þ
X

l2A:i6¼j 6¼k 6¼l

x2i;k;l;j;ds

 ! !

8i; j 2 A : i 6¼ j ð2Þ

x0i;j;ds þ
X

k2A:i 6¼j 6¼k

x1i;j;k;ds þ x1k;i;j;ds

� �
þ

X

k;l2A:i 6¼j 6¼k 6¼l

x2i;j;k;l;ds þ x2k;i;j;l;ds þ x2k;l;i;j;ds

� �

�
X

t2T

mt � yijt 8i; j 2 A : i\j; ds 2 DS ð3Þ

x0i;j;ds þ
X

k2A:i 6¼j 6¼k

x1i;j;k;ds þ x1k;i;j;ds

� �
þ

X

k;l2A:i 6¼j 6¼k 6¼l

x2i;j;k;l;ds þ x2k;i;j;l;ds þ x2k;l;i;j;ds

� �

�
X

t2T

mt � yjit 8i; j 2 A : i [ j; ds 2 DS ð4Þ

yijt ¼ 0 8i; j 2 A : i\j; t 2 T; if disti;j [ rmaxt or disti;j\rmint ð5Þ
X

i;j2A:i\j

X
2 � yijt � disti;j� ubt 8t 2 T ð6Þ
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revenueds ¼
X

i;j2A:i6¼j

pi;j �
 

x0i;j;ds þ 1� pdð Þ

�
X

k2A::i 6¼j 6¼k

x1i;k;j;ds þ 1� 2 � pdð Þ
X

k;l2A:i6¼j 6¼k 6¼l

x2i;k;l;j;ds

!
8ds 2 DS

ð7Þ

consumption ¼
X

i;j2A:i\j;t2T

2 � yijt � distij � const ð8Þ

operationcosts ¼
X

i;j2A:i\j;t2T

2 � yijt � distij � cpmt ð9Þ

buy stochþ buy hedge ¼ consumption ð10Þ

fuel costsfs ¼ buy stoch � prfs þ buy hedge � f pr � 1þ f margin

100

� �
8fs 2 FS

ð11Þ
profitfs;ds ¼ revenueds � fuel costsfs � operationcosts 8fs 2 FS; ds 2 DS ð12Þ

cvar ¼ �1

a
a � cvar y0þ

X

ds2DS;fs2FS

cvar yfs;ds � probfs;ds

 !
ð13Þ

cvar y0þ cvar yfs;ds� � profitfs;ds 8fs 2 FS; ds 2 DS ð14Þ
The objective function maximizes the expected profit, but the CVaR can also be

maximized. The constraints (1) ensure that the passenger flow variables do not

exceed the demand; minimum demand satisfaction is forced by (2). This should

ensure a connection (with 0, 1 or 2 aircraft changes) between every pair of airports

in the network, if there is a demand between these airports. The inequalities (3) and

(4) implement aircraft capacity, (5) assures that the maximum and minimum

distance of aircrafts is not exceeded. The constraints (6) ensure the maximum

number of flightkilometers with an aircraft type while (7) assign the revenue. The

constraints (8) calculate the consumed jet fuel and (9) calculates the additional

operational costs. The equality (10) sets the variables for hedged and non-hedged

fuel purchases. The fuel costs and the profit for every scenario are calculated in (11)

and (12). Finally (13) and (14) integrate the CVaR into the optimization model.

The stage-2-variables are only indexed by the demand scenario and not by the

fuel price scenario. This is possible, because when the flights are planned by the

stage-1-variables the fuel-price does not have any impact on the transported

passengers—as much as possible is transported for every demand scenario. Thereby

we only need one tenth of the stage-2-variables, when we use 10 fuel price

scenarios, and can decrease computational complexity. The connection of the fuel

price scenarios and the demand scenarios is done by the accounting variables.

This two-stage stochastic program is solved as deterministic equivalent with a

standard MIP-solver. The model is solved within a few minutes on a computer with

Core2Duo 3.2 GHz, 8 Gb Ram and Windows 7 64 bit.
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3.3 An illustrative application

The data for this model is a small case study that was developed with a European

airline. We consider two countries with 6 airports in each country; the countries are

on different continents.

The considered aircraft types are a small one for domestic and medium-haul

connections and a larger long-haul aircraft for intercontinental distances. The usage

of aircraft types is constrained by a minimum range to avoid high consumption

because of too short flights with large aircrafts and by their maximum range. The

flight distance between the airports is always the shortest line between the airports.

To calculate the demand scenarios, we use the expected demand, which is

symmetric for each pair of airports, for the flights and create a random value for

each scenario from a normal distribution with l = expected demand and

r = expected demand/6 for each flight. These values are multiplied with factors

from 77 % to 122 % depending on the 5 demand scenarios to create scenarios with

different lower and higher total demands. Finally, negative values are set to 0. The

value used for pd is 0.1; the value for a is also 0.1—therefore the worst 10 % of all

scenarios are considered in the CVaR.

The jet fuel in November 2009 costs 0.55 $ per liter (see International Air

Transport Association 2009a). The model takes 10 scenarios for the future jet fuel

price into account. The spread of the fuel prices in the scenarios is quite large in

order to examine the effects of the jet fuel price development (Table 1).

The fair forward rate for the scenarios is then calculated and an adjustable margin

for the forward-contracts is added.

The parameter xmin is set to 0.5, which means that 50 % of the expected demand

for each connection has to be satisfied. The prices of the flights depend on the

combination of the countries of the origin and destination airport.

Note that in this example a new network is constructed. With this model, it would

also be possible to refine an existing network, which is commonly done in practice.

Then the y-Variables of non-modifiable flights should be fixed to the desired

frequency of the connection between the two airports. This will also decrease the

computational complexity of the model.

4 Results

4.1 Models for every jet fuel price scenario

The evaluation begins with a study of the impacts of different fuel prices on the

optimal offered flights. We would like to show how they are determined by the

Table 1 Jet fuel price scenarios

Scenario 1 2 3 4 5 6 7 8 9 10

Jet fuel price $/l 0.06 0.11 0.17 0.28 0.41 0.55 0.69 0.83 1.05 1.38

Probability 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
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development of the jet fuel price. Therefore, we optimize one model for each jet fuel

price scenario without allowing financial instruments. The model for each jet fuel

price scenario is also a stochastic model but the only uncertainty is the demand

uncertainty. Then we look if the demand is satisfied and how many flights are

carried out with each aircraft type. Figure 5 shows how many passengers are non-

stop transported to their destination, how many are transported with an aircraft

change and how many are not transported because their transportation would be

unprofitable. (Note that the jet fuel price for scenario 1 is the lowest and for 10 the

highest).

Figure 5 shows that if the jet fuel price rises, transporting fewer passengers

becomes profitable and therefore more demand is not satisfied. The unsatisfied

demand from scenario 1 to 5 is below 2 %, but grows to nearly 6.5 % in scenario

10. The percentage of non-stop transported passengers also decreases from 95 %

in scenario 1 to 89.5 % in scenario 10, while the percentage of transported

passengers with aircraft change is always between 3.5 and 4 %. This shows that

the amount of flights with aircraft changes of all flights slightly grows with higher

jet fuel prices, although those passengers are less profitable because of the

discount that is given for aircraft changes and the additional fuel and operational

costs that they cause because of the indirect route. Note that the percentages are

the average percentages over the 5 demand scenarios for each jet fuel price

scenario.

Figure 6 shows the average load factor of all flights depending on the different jet

fuel prices. From scenario 1 to 4 values between 76 and 78 % are optimal. The

optimal load factor grows to 84 % in scenarios 10, where the demand satisfaction

decreases from [98 % in the scenarios 1 to 6 to 93 % in the highest fuel price

scenario. The increase of the seat usage has a minor impact on the demand

satisfaction in scenario 1 to 6. The impact becomes higher from scenario 7 on where

the seat usage grows to values of 80 % and higher. The increase of the load factor

now decreases the satisfied demand more significantly.

Fig. 5 Transported demand
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This may be explained by the demand uncertainty: When the average seat usage

of all demand scenarios grows to higher levels higher than 80 %, we cannot

transport all passengers in the higher demand scenarios. This additional demand in

the higher demand scenarios is not satisfied, which causes the significant decrease in

demand satisfaction. Connections also become unprofitable so that some flights are

not offered anymore which decreases the demand satisfaction, too.

Financial hedging instruments are not considered in the models for every jet

fuel price scenario, because as there is only one fuel price in each model and the

profit is maximized for each scenario, the financial instruments could not change

the risk.

Note that the results for this section, where one model for every fuel price

scenario is created, might not be implemented without changes in practice. For

example, the flight prices could be increased in the high fuel price scenarios so that

more profitable flights could be offered, the demand satisfaction could increase, and

lower load factors could be optimal because the aircraft does not need to have every

seat occupied to be profitable. This section only shows the significant impacts of

different fuel prices on offering the optimal flights by creating one solution for every

fuel price scenario. In reality, one decision for offering flights has to be made here-

and-now for all scenarios under fuel price uncertainty. This underlines the

importance of considering fuel price uncertainty in the optimization model, what is

done in the further results with the proposed model.

4.2 Models considering both uncertainties and robustness

In this section, we present the calculations for the stochastic model that considers all

jet fuel price and demand scenarios. The decision which flights should be offered

and flown has to be done under uncertainty. Also the amount of jet fuel that should

be hedged is a stage-1-decision. The stage-2-decisions are the passenger flows. To

measure robustness, we restrict the CVaR at different risk levels.

Fig. 6 Load factor
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4.2.1 Non-integrated hedging approaches

At first, we take a look at the risk/profit distribution of the model without financial

instruments. Therefore, we first maximize the expected profit, then maximize the

CVaR, and afterwards again the expected profit under the constraint of different risk

levels. We first do this without financial instruments and obtain the pareto-frontline

of optimal solutions shown in Fig. 7.

In Table 2, we compare the solutions with the highest expected profit (upper-left

solution) and the lowest risk (bottom-right solution).

We can see that the most robust solution with the lowest risk has a CVaR of

10.306 m instead of 7.372 m. Also the profit in the worst scenario has increased

from 5.522 to 9.296 m, and the spread between the best and the worst scenario is

significantly lower. On the other hand, the expected profit has also decreased from

15.106 to 12.780 m. The risk is reduced by offering fewer flights and therefore

consuming less jet fuel—the consumption is reduced by about one-third.

These significant changes show that gaining maximum robustness needs severe

operational changes, which might not be desired in practice. One medium solution

with CVaR 9.132 m, expected profit 14.623 m and 436 and 20 flights with the

aircraft types might be the most robust and practical solution. Therefore, other

methods for gaining robustness are necessary.

Fig. 7 Profit/risk-profile without hedging

Table 2 Results highest

expected profit—lowest risk
Highest exp. profit Lowest risk

Expected profit 15.106 m 12.780 m

CVaR 7.372 m 10.306 m

Profit of the worst scenario 5.522 m 9.296 m

Profit the best scenario 22.450 m 14.659 m

Scenarios with profit \ -10 m 8 1

Flights medium-haul aircraft 502 330

Flights long-haul aircraft 26 16

Consumed jet fuel (l) 4.342 m 2.715 m

How does fuel price uncertainty affect strategic airline planning? 357

123



www.manaraa.com

An approach could be to hedge the bought jet fuel. We expect that the minimum

risk exposure is obtained by hedging 100 % of the purchases. We then obtain the

additional pareto-frontline in Fig. 8.

If the fuel purchases are completely hedged, the best CVaR can be increased

significantly from 10.306 to 11.492 m. Hedging therefore can significantly increase

robustness. But we also find out that the expected profit is lower than the maximum

expected profit without hedging jet fuel. This is because the hedging premium

lowers the expected profit. Hedging all jet fuel purchases is better than hedging no

fuel purchases when the minimum accepted CVaR is higher than *8.5 m (where

the two lines cross each other).

We also see that the expected profit does not grow if we allow lower CVaR

values than 9 m. Up to this CVaR, it is not necessary to change any flight or any

passenger flow to gain less risk. The risk for the solutions with CVaR \9 m is

completely covered by financial hedging. But could we gain more profit by hedging

less jet fuel? Probably yes, because the costs for hedging premium then would also

decrease. But which percentage of the bought jet fuel should then be hedged? And if

we first create a flight schedule and then determine the amount of hedged jet fuel or

vice versa, do we disregard interactions? These questions lead to the integrated

consideration of financial hedging instruments in the next section.

4.2.2 Integrated hedging approach

This section shows the results for additional integration of financial hedging

instruments into the optimization model. Now the amount of hedged fuel purchases

is determined simultaneously with the other decisions in the model. This adds a

degree of freedom and leads to this pareto-frontline in Fig. 9.

The first obvious result is that the integrated model has the best solution at all risk

levels. This is because it can save the hedging premium in high-risk-solutions and is

also able to determine the right amount of hedging in robust solutions in a way that

not too much hedging (and thereby paying more hedging premium) lowers the

expected profit. It therefore determines the best combination of hedging and

Fig. 8 Profit/risk-profile with 0 and 100 % hedging
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operational changes simultaneously to gain a certain risk level with the best possible

profit.

In the case where the risk is minimized, we calculate the same solution in the

integrated model and in the model where 100 % of the purchases are hedged; in the

case where the profit is maximized with no other risk-constraints, the model without

financial instruments and the integrated model create the same solution. In between,

when a risk limit is specified, the solutions of the integrated model dominate the

non-integrated approaches and always find the global optimum.

As nowadays fuel hedging is usually planned independently from operational

planning in airlines’ financial departments, and operational planning departments

only take the percentage of hedged fuel into account, this can lead to worse

solutions than the global optimum.

Furthermore, we look at a more detailed comparison of the different solutions

with free and without hedging. Table 3 shows the expected profit, the number of

flights with the different aircraft types and the amount of fuel hedged of the different

solutions.

We can see that a significant decrease of flights in the solutions with hedging

begin at higher robustness levels than in the solutions without hedging. The

maximum robustness without hedging (CVaR = 10.31 m) can be gained by using

hedging and a practically reasonable decrease of flights and profit. Very large

changes in the number of flights offered are usually not desired, because usually

only a small share of the aircraft used is chartered and only a few number of aircraft

is separated out during a flight plan period.

We also spot that fuel hedging sometimes slightly decreases (from 99.8 to 99.6 %

or from 100 to 99.8 %) although the CVaR is limited to higher values. These can be

explained by interactions between financial and operational planning that the

integrated model can utilize.

Because financial instruments can be integrated with a LP-based formulation, the

computational complexity of the integrated model is not significantly increased.

Therefore, we recommend using an integrated approach.

Fig. 9 Integrated profit/risk-profile
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4.3 Evaluation of the stochastic model

To evaluate the model developed, we calculate two well known ratios for stochastic

optimization models: The Expected Value of Perfect Information (EVPI) and the

Value of the Stochastic Solution (VSS). The EVPI is the difference between the

here-and-now-solution and the wait-and-see solution of the stochastic model and

therefore denotes the price that should be paid at maximum to purchase perfect

information about the future. The Value of the Stochastic Solution (VSS) is the

difference between the expectation of the expected value (EEV-Solution) and the

here-and-now solution. To gain the EEV-solution, all uncertain parameters are set to

their expected value, the optimal solution of a deterministic model with these

parameters is calculated and evaluated for every scenario. The expected value of

these solutions is the EEV. The VSS therefore denotes the advantage of solving a

stochastic model instead of a deterministic model.

For this model maximizing the expected profit with both uncertainties and no

hedging the EVPI is 1.195 m. If hedging is allowed the EVPI grows to 1.773 m.

This is because hedging can gain additional profit, if the airline knew the future

price of the jet fuel and can then hedge it only in the scenarios where the future

price is higher than the fair hedge rate. This value is therefore hypothetical.

The VSS is 0.578 m in both cases. It does not change because there are no wait-

and-see decisions like in the models that calculate the EVPI. This value underlines

the benefit of using stochastic optimization models for this application.

Table 3 Detailed results with and without hedging

Lower

cvar

limit

(m)

Expected_profit

(no hedging)

(m)

Expected_profit

(free hedging)

(m)

Flights

by

medium

aircraft

(no

hedging)

Flights

by large

aircraft

(no

hedging)

Flights

by

medium

aircraft

(free

hedging)

Flights

by large

aircraft

(free

hedging)

% Fuel

hedged

(free

hedging)

7.37 15.11 15.11 502 26 502 26 0

7.52 15.10 15.10 492 26 494 26 0.3

8.25 14.99 15.04 474 22 490 24 22.1

9.13 14.62 14.88 436 20 488 24 89.0

9.72 14.06 14.72 394 18 458 22 99.8

10.07 13.51 14.56 350 18 450 20 99.6

10.22 13.14 14.47 340 16 442 20 100

10.28 12.93 14.43 334 16 436 20 99.8

10.31 12.78 14.41 330 16 432 20 100

13.80 388 18 100

13.16 352 16 100

12.73 326 16 100

12.30 308 16 100
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5 Conclusion

This paper addresses strategic airline planning under jet fuel price uncertainty. A

new stochastic optimization model that considers fuel price and demand uncertainty

was developed. Furthermore, financial hedging instruments and a risk measure, the

CVaR, was implemented to create the first optimization model for strategic airline

planning considering financial hedging and operational planning integrated in one

stochastic optimization model.

The results first examined the impacts of different jet fuel prices. It was shown

that higher jet fuel prices make more flights become unprofitable. Passengers will

have to accept more aircraft changes when jet fuel prices increase. Also less empty

seats are optimal at higher fuel prices. It could be shown that different jet fuel prices

have a high impact on optimal strategic airline planning.

Furthermore the developed model that considers jet fuel price and demand

uncertainty was used to examine the robustness of the solutions by creating profit/

risk-profiles for a model variation without hedging, for a variation with hedging

100 % purchases and for an integrated consideration. It has been shown that the

integrated consideration gives better solutions because it allows interaction between

financial instruments and the operational decisions. Financial instruments can

significantly increase the robustness when risk is restricted.

In future research, more sophisticated models that include fuel price uncertainty,

financial hedging and several planning steps like airline schedule design and airline

fleet assignment could be developed. Aspects like several booking classes may also

be included. To solve these proposed models with real data, more computational

power and/or specialized solution algorithms is necessary.
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